Comparison of long-chain fatty acyl-CoA synthetases from rabbit heart and liver: substrate preferences and effects of Mg2+.

نویسندگان

  • M T Weis
  • A Bercute
چکیده

Rabbit heart has a single, non-specific, fatty acyl-CoA synthetase (HP1) which is dependent on Mg2+, apart from the requirement for MgATP2-. Two long-chain fatty acyl-CoA synthetase activities (LP1 and LP2) can be resolved by hydroxyapatite chromatography of liver preparations; the Mg2+ requirement for these enzymes is undefined. These experiments were done to define the Mg2+ requirements of the liver enzymes and to compare them with the heart enzyme. For all three sources of enzyme and for arachidonic, oleic and palmitic acid substrates, the overall velocity of the reaction increased as [Mg2+] increased. Depending on the substrate and the source of enzyme, the increase in overall velocity could be attributed to changes in affinity or maximal velocity or both. The substrate preference of the HP1 enzyme for arachidonic acid (AA) was fifth or sixth of eight substrates regardless of the concentration of Mg2+. In contrast, increasing [Mg2+] shifted the relative substrate preference of both liver enzymes for AA. At low [Mg2+], AA was ranked seventh or eighth (least preferred) of eight substrates, whereas at high [Mg2+], AA was ranked as fifth or sixth. Hill plots of competition studies were consistent with Mg2+-induced positive co-operativity in LP1, but not in HP1 or LP2. Although enzymes from the three sources exhibit substantial kinetic differences, it is uncertain whether they are three different enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart

Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...

متن کامل

Long chain fatty acid activation in subcellular preparations from rat liver.

A study of the activation of several long chain saturated and unsaturated fatty acids by rat liver preparations was undertaken. Investigation of reaction requirements and appropriate modifications revealed that rat liver is extremely active in long chain acyl-coenzyme A synthetase or synthetases (acid: CoA ligase (AMP), EC 6.2.1.3) activity. With pahnitate as substrate, the cell membrane fracti...

متن کامل

Enzymatic and genetic characterization of firefly luciferase and Drosophila CG6178 as a fatty acyl-CoA synthetase.

Recently we found that firefly luciferase is a bifunctional enzyme, catalyzing not only the luminescence reaction but also long-chain fatty acyl-CoA synthesis. Further, the gene product of CG6178 (CG6178), an ortholog of firefly luciferase in Drosophila melanogaster, was found to be a long-chain fatty acyl-CoA synthetase and dose not function as a luciferase. We investigated the substrate speci...

متن کامل

Lipid metabolism in the newborn heart.

In recent years long chain fatty acids have been shown to be the principal metabolic fuel of the adult heart (1-3). For the tissues of the mammalian fetus, however, carbohydrates rather than lipids appear to serve as the primary source of energy (4, 5). This difference in energy metabolism related to maturation suggested that the heart of the newborn, in contrast to that of the adult, might be ...

متن کامل

Interaction of acyl-CoA binding protein (ACBP) on processes for which acyl-CoA is a substrate, product or inhibitor.

It is shown that acyl-CoA binding protein (ACBP), in contrast with fatty acid binding protein (FABP), stimulates the synthesis of long-chain acyl-CoA esters by mitochondria. ACBP effectively opposes the product feedback inhibition of the long-chain acyl-CoA synthetase by sequestration of the synthesized acyl-CoA esters. Feedback inhibition of microsomal long-chain acyl-CoA synthesis could not b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 322 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1997